segunda-feira, 12 de julho de 2010

Sora s2

Sora!! Te amamoos
Beijos Cami, Luiza e Nicky
WOW

Bháskaraa!


Resolva a seguinte equação usando a fórmula de Bháskara.
x² - 6x + 8 = 0
DIVIRTAM-SE!








Grandes Matemáticos \o/





quinta-feira, 24 de junho de 2010

Fatoração aê \ô/

Fatorar é transformar equações algébricas em produtos de duas ou mais expressões, chamadas fatores.

Ex: ax + ay = a.(x+y)

Existem vários casos de fatoração como:

1) Fator Comum em evidência

Quando os termos apresentam fatores comuns

Observe o polinômio:
ax + ay » Ambos os termos apresentam o fator a em evidência.

Assim: ax + ay = a.(x+y)
Forma fatorada

Exs : Fatore:

a) bx + by - bz = b.(x+y-z)

2) Fatoração por agrupamento
Consiste em aplicar duas vezes o caso do fator comum em alguns polinômios especiais.

Como por exemplo:
ax + ay + bx + by
Os dois primeiros termos possuem em comum o fator a , os dois últimos termos possuem em comum o fator b. Colocando esses termos em evidência:

a.(x+y) + b.(x+y)

Este novo polinômio possui o termo (x+y) em comum. Assim colocando-o em evidência:


(x+y).(a+b)

Ou seja: ax + ay + bx + by = (x+y).(a+b)

Exs: Fatore:

a) x²-3x+ax-3a=x.(x-3)+a(x-3)= (x-3).(x+a)




3) Fatoração por diferença de quadrados:


Consiste em transformar as expressões em produtos da soma pela diferença, simplesmente extraindo a raiz quadrada de cada quadrado

Assim: x²-9= (x-3).(x+3)

4) Fatoração do trinômio quadrado perfeito:

O trinômio que se obtém quando se eleva um binômio ao quadrado chama-se trinômio quadrado perfeito.

Por exemplo, os trinômios (a²+2ab+b²)e (a²-2ab+b²)são quadrados perfeitos porque são obtidos quando se eleva (a+b) e (a-b) ao quadrado, respectivamente.

(a+b)²= a²+2ab+b²
(a-b)²= a²-2ab+b²

Exercícios de Equação de 1º Grau! \o/

1) (Como Exemplo) Um número mais a sua metade é igual a 150. Qual é esse número?

Solução:
n + n/2 = 150
2n/2 + n/2 = 300/2
2n + n = 300
3n = 300
n = 300/3
n = 100
Resposta: Esse número é 100.

2) A diferença entre um número e sua quinta parte é igual a 36. Qual é esse número?

Solução:
x - x/5 = 36



Resposta: Esse número é 45.

3) O triplo de um número é igual a sua metade mais 20. Qual é esse número?

Solução:
3 m = m/2 + 20

Resposta: Esse número é 8.

4) O triplo de um número, mais 5, é igual a 254. Qual é esse número?

Solução:
3p + 5 = 254
Equações do 1º grau com uma variável

Equação é toda sentença matemática aberta representada por uma igualdade, em que exista uma ou mais letras que representam números desconhecidos.

Exemplo:X + 3 = 12 – 4

Forma geral: ax = b, em que x representa a variável (incógnita) e a e b são números racionais, com a 0. Dizemos que a e b são os coeficientes da equação.(ax = b, é a forma mais simples da equação do 1º grau)

Exemplos:

x - 4 = 2 + 7, (variável x)
2m + 6 = 12 – 3 ,(variável m)
-2r + 3 = 31, (variável r)
5t + 3 = 2t – 1 , (variável t)
3(b – 2) = 3 + b,(variável b)
4 + 7 = 11, (é uma igualdade, mas não possui uma variável, portanto não é uma equação do 1º grau)
3x – 12 > 13, (possui uma variável, mas não é uma igualdade, portanto não é uma equação do 1º grau)

Obs:

Devemos observar duas partes em uma equação, o 1º membro à esquerda do sinal de igual e o 2º membro à direita do sinal de igual.

Veja:

terça-feira, 22 de junho de 2010